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Abstract
We discuss the spin glass states of the deterministic spin model with long
range anti-ferromagnetic interactions. To apply the replica method, the partial
statistical summation with fixed overlap parameters is introduced. By this
formulation, we find that the replica theory for this model reduces to that of
the anti-Hebbian model in the long range limit, suggesting the existence of
dynamical phase transition and glassy states. Results of simulated annealing
are also presented to confirm these results.

PACS numbers: 05.20.−y, 05.50.+q, 64.60Cn

1. Introduction

In recent years, a lot of efforts have been made to clarify the glassy states of deterministic
spin models, which do not have quenched disorder, by using the accumulated results for the
random spin models [1]. One of the main interests is focused on the dynamical nature of glass
phase transition, which is not reflected in the usual thermodynamic functions. There have
been several studies of dynamics to address this problem [2]. On the other hand, the replica
method is important to describe the partitioned configuration space, which also characterizes
the glassy states. One replica approach is to introduce random spin models to simulate the
glassy properties of the deterministic models [3–5]. Another approach is to introduce a small
coupling among replicas [6]. By these approaches, it was clarified that some deterministic
models really have glassy low temperature states, which are associated with a dynamical phase
transition. To clarify the situation in the conventional systems, it will be fruitful to study the
familiar spin systems in the light of the studied spin glass models.

In this paper, we first show that some long range anti-ferromagnetic spin models can be
viewed as a natural generalization of the anti-Hebbian (AH) model [7], which has glassy states
associated with a dynamical phase transition. Secondly, we suggest a replica method for the
deterministic spin models to study this model.
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The spin model we discuss is defined on the one-dimensional lattice with the energy
function given by

H = 1

2

∑
ij

Jij SiSj (1)

with

Jij = sin απ(i − j)

π(i − j)
(2)

where i, j = 1, 2, . . . , N , N is the system size and Si = ±1 are Ising spin variables located
on the lattice sites. α is a positive parameter smaller than 1. The terms with Jii = α

are included in (1) for convenience. For simplicity, we define the sign of interactions
opposite to the conventional one. Note that the interactions are anti-ferromagnetic for
2k/α < |i − j | < (2k + 1)/α (k = 0, 1, . . .) and similar to the RKKY interaction.

Let us introduce this model by starting with the observations on the AH model [7], which
is defined by the energy function

HA = 1

2N

∑
ij

∑
µ

ξ
µ

i ξ
µ

j SiSj

= 1

2N

∑
µ

(∑
i

ξ
µ

i Si

)2

(3)

where ξ
µ

i (µ = 1, 2, . . . , P ) are quenched random variables which take ±1 with probability
1/2. This model has an interesting property. When P � N , the spin glass phase transition
is similar to that of the Sherrington–Kirkpatrick (SK) model [8, 9], while it has a dynamical
phase transition for P/N < 1. This property is understood by observing the structure of
the energy function. That is, the energy function is minimized by the configurations which
satisfy

∑
i ξ

µ

i Si = 0 for all µ. This makes an (N − P)-dimensional solution space for
P/N < 1. Although these constraints will not be satisfied exactly by discrete spin variables,
the configurations which nearly satisfy these constraints will make a strongly degenerated
energy landscape, especially for small P/N , implying there are many glassy states at low
temperature. This model can be regarded as a nontrivial generalization of the infinite range
anti-ferromagnet, for which P = 1.

The observations on the AH model suggest that, to have similar properties, ξ
µ

i can be
arbitrary as long as they make linear independent functions of Si . This directly suggests
taking the Fourier transformations of Si as the linear functions, assuming that Si are located,
for example, on the one-dimensional lattice. As a simple realization of this idea, we suggest
the energy function which is defined by

H =
∑
|µ|

∣∣∣∣∣
∑

i

e
√−1(2πµ/N)iSi/

√
N

∣∣∣∣∣
2

= 1

N

∑
ij

∑
|µ|

e
√−1(2πµ/N)(i−j)SiSj (4)

where
√−1 stands for an imaginary unit and

∑
|µ| means the sum over µ = 0, 1, 2, . . . , P/2

with P < N . Note that the real part and imaginary part of a Fourier component make two
squared linear forms of Si , giving P + 1 ∼ P constraint terms in (4). After performing
the µ sum, we obtain the interactions given by (2) with α = P/N . We call this model the
Fourier component (FC) model. It is quite interesting and suggestive that this model tends
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to the infinite range anti-ferromagnet as α → 0, just like the AH model. This is a natural
consequence of the modelling.

The FC model will have some special configurations. We expect that the Fourier
components of Si with small wavelength have very low energy. Most of them do not give the
absolute minimum of the energy function due to the discreteness of spin variables. However,
there are two exceptions given by Si = ±cos(π i), which correspond to crystalline structures.
The basin of attraction of them will become larger as the number of constraint terms increases.
This is an interesting aspect of the FC model, although we concentrate on the study of glassy
states in this paper.

This paper is organized as follows. In section 2, we begin with the high temperature
expansion of the FC model to measure the proximity to the AH model. In section 3, we
suggest a replica method for the deterministic spin models and apply it to the FC model. The
argument in section 2 suggests the perturbation treatment in terms of α for the replicated FC
model. This is discussed in section 4, which also provides some simulation results. Section 5
is devoted to some discussions.

2. High temperature expansion of the FC model

The discussion in section 1 suggests that the FC model and the AH model are very similar.
In this section, we study the high temperature expansion of both models to clarify this point.
This study suggests the perturbation method in terms of α for the FC model. In addition, the
formulation in this section will be very helpful to study the replica theory introduced in the
next section.

To begin with, we discuss the high temperature expansion for the AH model [7]. The
partition function is given by

ZA =
∑
{S}

exp(−βHA) (5)

where β = 1/T is an inverse temperature. After the expansion in terms of interactions and the
summation over Si = ±1, ln ZA is expressed as a summation over non-self-intersecting loop
diagrams made of interactions. With ξ

µ

i average, which is denoted by · · ·, a loop of any length
becomes proportional to P/N . We then obtain the free energy fA = −ln ZA/βN given by

fA = − 1

β
ln 2 +

α

2β
ln(1 + β) (6)

where α = P/N has the same meaning as the FC model, that is, the ratio between the numbers
of constraints and spin variables. The energy and entropy are given by eA = ∂βfA/∂β

and sA = β(eA − fA). It is quite interesting that, by this simple result, we find that
the entropy sA becomes negative at some low temperature. This temperature is given by
Ts ∼ exp(−1 − 2 ln 2/α) for small α. Since negative entropy for Ising spin is not acceptable,
some phase transition should occur above this temperature. Note that Ts is roughly obtained
by demanding ZA ∼ 1, which implies there are a few configurations contributing to ZA with
nearly zero energy. We can estimate the energy density of these configurations by setting
T = Ts in eA, obtaining eA ∼ (α/2) exp(−1 − 2 ln 2/α).

Now we discuss the high temperature expansion for the FC model. Actually, collecting all
terms of the expansion will not be easy for arbitrary α. In the following, we study this problem
by expansion in terms of α. It is convenient to use the Fourier component representations
for this purpose. For simplicity, we use the abbreviation e

µ

i ≡ e
√−1(2πµ/N)i in the following

expressions.
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Using the Gaussian integrals, the partition function for the FC model is expressed as

Z =
∑
{S}

exp


−1

2
β
∑
|µ|

∣∣∣∣∣
√

2
∑

i

e
µ

i Si/
√

N

∣∣∣∣∣
2



=
∑
{S}

∫
exp


−1

2

∑
|µ|

|φµ|2 +
1

2

√−1

√
2β

N

∑
i

∑
µ

e
µ

i φµSi


∏

|µ|

dφµ

2π
(7)

where
∑

µ means the summation over µ = −P/2, . . . , P/2 and φµ are complex integral
variables with φ−µ = φ∗

µ, and dφµ = d Re φµ d Im φµ. Note that there is an imaginary unit in
the second term in the exponential. This is the common feature of the anti-ferromagnetic-like
interactions. After Si sum, we have

Z = 2N

∫
exp(−L{φµ})

∏
|µ|

dφµ

2π
(8)

where

L{φµ} = 1

2

∑
|µ|

|φµ|2 −
∑

i

ln cos

√
β

2N

∑
µ

e
µ

i φµ

= 1

2
(1 + β)

∑
|µ|

|φµ|2 +
1

48N
β2

∑
∑4

k=1 µk=0

φµ1φµ2φµ3φµ4 + · · · . (9)

The first term in the second line of L{φµ} makes a Gaussian part, while there are higher order
terms of φµ. These terms can be treated by perturbation with propagators

〈|φµ|2〉 = 2(1+β)−1,
where the average is done by the Gaussian part of L{φµ}. We then obtain the free energy
f ≡ − ln Z/βN ,

f = − 1

β
ln 2 +

α

2β
ln(1 + β) +

1

4

α2β

(1 + β)2
+ · · · (10)

the energy e,

e = 1

2

α

1 + β
+

1

2

α2β

(1 + β)3
+ · · · (11)

and the entropy s = β(e − f ) to the second order of α. The effects of the second-order terms
are very small for low temperature due to the factor 1/(1 + β). To the first order of α, the
expansion reduces to that of the AH model. Just like the AH model, the entropy becomes zero
at Ts to the first order of α, which implies that there should be some phase transition above Ts

for the FC model at least for small α. In terms of the cosine-functions in (9), they will give a
very small value of Z for low temperature and Z substantially becomes of order 1 as T → Ts .

Let us give some remarks on the expansion. When Z is directly expanded in terms of
βJij , we need to collect all the first- and second-order terms of α to obtain (10). As for
the first-order terms, the situation is similar to the AH model. The factor ln(1 + β) in the
free energy implies that we should collect all contributions of loops made of βJij to obtain
the first order of α. These terms, after summation over site subscripts, really give the terms
proportional to α. For example, denoting the sum over different site subscripts by

∑′, we
have

∑′
J 2

ij

/
N = α − α2,

∑′
JijJjkJki

/
N = α − 3α2 + 2α3, etc. For the FC model, we can

sum the leading contributions conveniently by working with Fourier components.
Although there seems no inconsistency in the high temperature expansions down to the

point s = 0, the study for the AH model revealed that there is a dynamical phase transition
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far above Ts for small α. This transition can be identified by the replica method with the
marginality condition for random spin models. We naturally expect that the same thing
happens for the FC model. The problem is how to apply the replica method to the spin models
without quenched disorder.

3. Replica method for the FC model

In this section, we first discuss the replica method for the spin model without quenched
disorder, and then apply it to the FC model.

For the random spin models, we use the relation ln Z = limn→0(Z
n − 1)/n to obtain the

sample averages of the free energy f = − ln Z/βN . Before the random averages, the replica
partition function is simply given by

Zn =
∑
{S}

exp


−β

n∑
ρ=1

H
{
S

ρ

i

} (12)

where H {Si} is the energy function of the system and S
ρ

i (ρ = 1, 2, . . . , n) are replica spin
variables. In the mean field theory of the random spin models, the averages over randomness
with fixed spin variables yield the averaged Zn as a function of overlap order parameters∑

i S
ρ

i Sσ
i

/
N . Then, the saddle point of ln Zn is studied by varying these order parameters.

On the other hand, the FC model has no randomness and does not require sample averages.
Even in this situation, it is believed that the introduction of replicas will show some signal of
condensation states, which may or may not be seen by the usual thermodynamic functions.

The point of our formulation is to perform partial statistical sum which has a given
correlation among replicas, which may be described by S

ρ

i Sσ
i . We first note that S

ρ

i Sσ
i are

invariant by the simultaneous change S
ρ

i → −S
ρ

i for all replicas. This strongly suggests that
we will obtain the same result if we perform some partial statistical sum in Zn with fixed S

ρ

i Sσ
i

without doing random averages.
After several inspections, we found that the statistical sum with fixed S

ρ

i Sσ
i is conveniently

performed by introducing the replacements of S
ρ

i by ηiS
ρ

i , where ηi = ±1, which are common
among replicas. Since S

ρ

i Sσ
i do not change by ηi , the terms in Zn with the same S

ρ

i Sσ
i change

mutually by various ηi . To perform a partial statistical sum over them, it is natural to extend
the statistical sum to that over ηi = ±1. To count the terms correctly, we use the fact that Zn

is invariant by ηi due to the summation over S
ρ

i . Thus we can write

Zn = 1

2N

∑
{η}

∑
{S}

exp


−β

n∑
ρ=1

H
{
ηiS

ρ

i

} (13)

where
∑

{η} means the sum over all ηi = ±1. Then the ηi sum is performed first with fixed
S

ρ

i , resulting in the desired partial statistical sum. This summation will correspond to the
configuration sum with fixed S

ρ

i Sσ
i in the original Zn without ηi . Note that the introduction of

ηi has nothing to do with the symmetry of the energy function. We simply change the order
of summation in Zn by using ηi . Note also that, at this point, it is not clear if the result is
expressed by the site sum of S

ρ

i Sσ
i . This depends on the nature of the problem.

Let us perform the ηi sum for the FC model. Formally the ηi sum is very similar to
the high temperature expansion. For the FC model, it is convenient to follow the procedure
presented in section 2. We first express each term in (13) as an integral over Gaussian variables
φρ

µ with ρ = 1, 2, . . . , n in the same way as (7), and then the summation over ηi is performed.
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In this way, we can obtain the replicated partition function given by

Zn = 1

2N

∑
{η},{S}

exp


−1

2
β
∑
ρ,|µ|

∣∣∣∣∣
√

2
∑

i

e
µ

i ηiS
ρ

i

/√
N

∣∣∣∣∣
2



=
∑
{S}

∫
exp


−1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
∑

i

ln cos

( √
β√

2N

∑
ρ,µ

φρ
µe

µ

i S
ρ

i

)


∏
ρ,|µ|

dφρ
µ

2π
.

(14)

This is the basic formula for the following argument. We should note that this is just another
expression of (12) with the interactions (2). Integral over φρ

µ is performed by the expansion in
terms of α in a similar way as the high temperature expansion. We will discuss this point in
the next section.

4. Marginally stable RSB and simulation results

In this section, we discuss Zn to the first order of α and study the resulting expression by the
saddle point approximation. The simulation results for the FC model are also presented to
compare with the replica results.

There remain two steps to give the saddle point equations for our problem. We first
perform φ

ρ

i integrals to obtain A{Sρ}, which is defined by

exp A{Sρ} =
∫

exp(−L{Sρ, φρ})
∏
ρ,|µ|

dφρ
µ

2π
(15)

where

L{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 −
∑

i

ln cos

( √
β√

2N

∑
ρ,µ

φρ
µe

µ

i S
ρ

i

)
.

Then the partition function Zn = ∑
S exp(A{Sρ}) will be evaluated by the saddle point

approximation, if possible.
Now let us discuss the expression of A{Sρ}. We first note that the value of 
i =∑

ρ,µ φρ
µe

µ

i S
ρ

i will be proportional to
√

P . Thus, it is natural to discuss A{Sρ} by perturbation
in terms of α. The results will confirm this idea. By expanding L{Sρ, φρ} in terms of 
i , we
obtain

L{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
β

4N

∑
i


2
i +

β2

48N2

∑
i


4
i + · · · . (16)

The second term consists of the terms which are diagonal and off-diagonal with respect to µ.
The diagonal terms make

L1{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
β

2N

∑
ρσ

∑
|µ|

φρ
µφσ

−µ

∑
i

S
ρ

i Sσ
i . (17)

As discussed in the appendix, the off-diagonal Gaussian terms in 
2
i and higher order terms of


i give the second and higher order terms of α to A{Sρ}. This is because more than one free
subscript µ remains to be summed in these contributions. We then obtain to the first order of α

A1{Sρ} = − 1
2Nα Tr ln(1 + βq) (18)
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where qρσ = ∑
i S

ρ

i Sσ
i

/
N with qρρ = 1. This is the same expression as the AH model, which

implies that the FC model is described by the AH model to the first order of α even at low
temperature.

As discussed in [7], the study of Zn with A1{Sρ}, denoted by Zn
1 , can be performed in the

same way as that of the random orthogonal model [4]. We briefly describe the main results
here. By introducing

1 =
∏
ρ<σ

∫
δ

(
Nqρσ −

∑
i

S
ρ

i Sσ
i

)
N dqρσ

=
∏
ρ<σ

∫
exp

{
λρσ

(
Nqρσ −

∑
i

S
ρ

i Sσ
i

)}
N dλρσ dqρσ

2π i

we obtain

Zn
1 =

∫ ∫
exp{−Nβnf (λρσ , qρσ )}

∏
ρ<σ

N dλρσ dqρσ

2π i
(19)

where

βnf (λρσ , qρσ ) = Trg(βq) +
1

2

∑
ρ �=σ

λρσ qρσ − ln
∑
{S}

exp
1

2

∑
ρ �=σ

λρσ SρSσ (20)

with g(x) = (α/2) ln(1 + x).
By studying this expression, we found that there is no replica symmetry solution for α < 1.

On the other hand, there are two types of one-step replica symmetry breaking (RSB) solution,
which is defined by qρσ = q1, λρσ = λ1 in m × m diagonal blocks and qρσ = 0, λρσ = 0
elsewhere. In this ansatz, the matrix q has eigenvalue 1 − q1 + mq1 with degeneracy n/m and
eigenvalue 1 − q1 with degeneracy n − n/m. The free energy then reduces to

βf = 1

2
α

{
1

m
ln(1 + βxm) +

(
1 − 1

m

)
ln(1 + βx0)

}

+
1

2
(m − 1)λ1q1 +

1

2
λ1 − 1

m
ln

∫
2m coshm(

√
λ1z) Dz (21)

where Dz = exp(−z2/2) dz/
√

2π and xm = 1 − q1 + mq1, x0 = 1 − q1.
The static RSB solution is defined by ∂f/∂q1 = 0, ∂f/∂λ1 = 0 and ∂f/∂m = 0. For

small α, this solution appears at very low temperature, which is close to Ts , where the high
temperature entropy becomes zero. This solution is stable with respect to the small changes
of order parameters and is expected to represent the absolute minimum state of the AH model.

Another RSB solution is defined by replacing ∂f/∂m = 0 with the marginality condition
1 − gµ = 0, where

g = − αβ2

(1 + βx0)2
µ = −

∫
coshm(

√
λ1z) cosh−4(

√
λ1z) Dz∫

coshm(
√

λ1z) Dz
.

This condition corresponds to the marginal stability of the spin dynamics and it is expected
to describe the glassy states [3, 4, 10]. In the AH model with small α, the solution with
0 < m < 1 appears at the moderate temperature Tg, which is much higher than Ts . Below Tg,
this RSB solution gives the energy which depends on temperature very weakly down to rather
low temperature. For both solutions, the expectation value of energy is given by

e = α

2

{
1

m

xm

1 + βxm

+

(
1 − 1

m

)
x0

1 + βx0

}
(22)

which reduces to the energy of high temperature expansion for q1 = 0 and m = 1.
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0
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e
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Figure 1. T-dependence of energy for α = 0.5/π . The simulation results for the FC model are
presented by points with error bars, which show the standard deviations for five annealing runs.
N = 500. MC steps at each temperature is 104. Full curves show the energies obtained by the high
temperature expansion to the first and second orders of α, and marginal RSB for the AH model,
which appears below Tg = 0.0133.

Let us present some simulation results for the FC model. To avoid being commensurate
with lattice, we control απ in the numerical simulations. By observing many runs of simulated
annealing, we found that the expectation value of energy decreases nearly in accordance
with the result of high temperature expansion at moderate temperature, and around a certain
temperature, it ceases to decrease. In this narrow temperature region, the acceptance rate
of spin flips decreases drastically and the Edward–Anderson order parameter

∑
i〈Si〉2

M

/
N

rapidly increases to 1.0, while
∑

i〈Si〉M/N remains nearly zero, where 〈· · ·〉M means the
averages over Monte Carlo (MC) steps at each temperature. The spin configurations obtained
in this way look really random and uncorrelated with each other. However, we also monitor∑

i〈Si〉M cos(π i)/N , which are also found to be very small for the studied small α down to
zero temperature. Although we should clarify that the obtained states really show randomness
in the deterministic model, we concentrate on the temperature dependence of the energy, for
which analytic results by the AH model are available.

Figures 1 and 2 show the temperature dependence of energy obtained by simulated
annealing for the FC model with απ = 0.5 and 1.0, respectively. The figures also show the
results of the high temperature expansion for e and those of marginal one-step RSB which
are obtained for the AH model. The replica study of the AH model gives Tg = 0.0133 with
e = 0.001 05 for α = 0.5/π and Tg = 0.0313 with e = 0.004 83 for α = 1.0/π . These
values seem to be consistent with the simulation results.

Let us look at the simulation results more closely. In the high temperature region, the
annealing energies are slightly higher than (11) systematically for α = 0.5/π . We suspect that
this is due to the large system size dependence for small α caused by the long range nature of
interactions. In fact, figure 2 for α = 1.0/π shows a better agreement in the high temperature
region. Note that the factor (1 + β)−1 contained in higher order terms is very small for these
temperatures. We have studied the number of MC steps of each temperature from 103 to
104. For the temperature around and below Tg , numerical e depends on the number of MC
steps of each temperature and initial configurations in high temperature. Numerical e at low
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Figure 2. Same as figure 1 but for α = 1.0/π and Tg = 0.0313.
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e
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Figure 3. Simulation of increasing temperature for α = 1.0/π . The initial configuration at
T = 0.005 is assumed to be the crystalline state given in the text. The average is over the five runs
created by different random number sequences. N = 500 and MC steps at each temperature is
103. Full lines are the same as figure 2.

temperature tends to be large for a small number of MC steps and decrease to the same value
as the number increases. These phenomena are typical for glass phase transitions.

Figure 3 shows another interesting phenomenon in the FC model. As discussed in
section 1, this model has crystalline state Si = cos(π i). Assuming this configuration at
very low temperature, we can observe ‘melting’ of this by increasing the temperature step
by step. Figure 3 shows the temperature dependence of the averaged energy of the resulting
configurations. The initial configuration has a small positive energy probably due to the finite
system size. As the temperature increases, the crystalline state starts melting slightly above
Tg, and goes to the paramagnetic phase in the narrow range of temperature.

To summarize, the simulation results strongly suggest that there is a phase transition at
finite temperature in the FC model at least for small α. We may safely say that the transition
points and temperature dependence of energy are well described by the RSB solution with
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the marginality condition of the AH model, which is viewed as an approximated FC model.
All these results suggest that we are observing a glass transition of the long range anti-
ferromagnetic spin model.

5. Discussion

In this paper, we have studied the dynamical phase transition and glassy states of the
deterministic spin model defined on the one-dimensional lattice, which is called the FC
model. This model is inspired by the studies on the AH model. To apply the replica
method, we introduced a partial statistical sum for the replicated partition function. With this
formulation, we found that the FC model reduces to the AH model for small α. The simulation
results for the FC model are consistent with the marginal RSB solution obtained by the AH
model.

The AH model and the FC model are regarded as nontrivial generalizations of the infinite
range anti-ferromagnetic model, which has only one constraint term in the energy function.
When the number of constraint terms P is of order N but smaller than N, a remarkable
situation arises, i.e. a glass transition. For the FC model, the range of interactions is inversely
proportional to the number of constraint terms on the Fourier components. The model remains
tractable for small P/N in the framework of replica mean field theory. Although the resulting
picture on glass transitions was already found several years ago, it is interesting that a similar
property holds in the FC model, which looks rather simple and conventional.

To study the glassy states of the spin model without quenched disorder, we have introduced
a replica method in which the partial statistical sum is performed with fixed S

ρ

i Sσ
i . If the

statistical sum in Zn is performed independently for each replica, we simply obtain n times
the free energy evaluated by the high temperature expansion. But the situation essentially
changes under the partial statistical sum, by which the stage of thermodynamic limit will be
changed. This procedure seems general and probably applicable to models with other types of
dynamical variable, although we need to find a suitable order parameter to describe the glassy
states.

Studies of the higher order terms of α will reveal the properties of the moderate range
FC model. The brief study presented in the appendix implies that there appear complicated
terms made of qρσ and the products of S

ρ

i even in the second order of α. A similar situation
was already found in the models with finite connectivity [11, 12]. The studies accumulated
for these models may be helpful to know more about the FC model.

The idea that we have described to make the FC model is very general. In this paper, we
adopted a simple truncation of Fourier components to do an analysis as close as possible to the
AH model. The oscillation of interactions is due to the truncation of the Fourier components.
There will be another choice to weight the constraint terms of the energy function, which
will induce another spin models mainly characterized by spatially varying anti-ferromagnetic
interactions. Such models will be studied in a similar way if we can find a proper expansion
parameter. We may even generalize the model to higher dimensional lattice by introducing
a suitable Fourier representation. Studies in this direction may reveal that there is some
universality in the spin models with long range anti-ferromagnetic interactions.

Appendix

In this appendix, we briefly discuss the off-diagonal and fourth-order terms of φ
ρ

i in L{Sρ, φρ}
and show that they give the second-order terms of α.
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The second-order term of 
i in (16) contains

Loff = − β

4N

∑
i

∑
ρσ

∑
µ �=−ν

φρ
µφσ

ν e
µ

i eν
i S

ρ

i Sσ
i . (A.1)

The leading contribution to A{S} of this term reads

1

2

〈
L2

off

〉 =
(

β

4N

)2 ∑
ρσγ δ

∑
µ �=−ν,ij

gργ
µ gσδ

ν e
µ

i eν
i e

−µ

j e−ν
j S

ρ

i Sσ
i S

γ

j Sδ
j (A.2)

where gρσ
µ = 〈

φρ
µφσ

−µ

〉 = 2(1 + βq)−1
ρσ , where the averages are by L1{Sρ, φρ}. The summation

over µ and ν gives a factor proportional to P 2. Collecting P and N, we have a factor Nα2

in
〈
L2

off

〉
.

The contribution from the fourth order of 
i reads

−〈L4〉 = − β2

16N2

∑
i

∑
ρσγ δ

∑
µν

gρσ
µ gγδ

ν e
µ

i e
−µ

i eν
i e

−ν
i S

ρ

i Sσ
i S

γ

i Sδ
i . (A.3)

Similarly, there is a factor e
µ

i e
−µ

i eν
i e

−ν
i = 1 with two free subscripts µ, ν. This gives also a

factor P 2, making Nα2 in 〈L4〉. The number of free subscripts will increase in higher order
terms of 
i .
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[9] Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)

[10] Horner H 1992 Z. Phys. B 86 291
[11] Kanter I and Sompolinsky H 1987 Phys. Rev. Lett. 58 164
[12] Monasson R 1998 J. Phys. A: Math. Gen. 31 513


